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ABSTRACT
A poorly understood but important factor in many applica-
tions of random testing is the selection of a maximum length
for test runs. Given a limited time for testing, it is seldom
clear whether executing a small number of long runs or a
large number of short runs maximizes utility. It is generally
expected that longer runs are more likely to expose failures
— which is certainly true with respect to runs shorter than
the shortest failing trace. However, longer runs produce
longer failing traces, requiring more effort from humans in
debugging or more resources for automated minimization.
In testing with feedback, increasing ranges for parameters
may also cause the probability of failure to decrease in longer
runs. We show that the choice of test length dramatically
impacts the effectiveness of random testing, and that the
patterns observed in simple models and predicted by anal-
ysis are useful in understanding effects observed in a large
scale case study of a JPL flight software system.

1. INTRODUCTION
Random testing, an approach in which test inputs are gen-

erated at random (with a probability distribution that may
change as testing proceeds, and usually with the possibility
that inputs may be generated more than once), has recently
been shown to be an effective and easy-to-use automatic test
generation technique for a wide variety of software. This
software can be divided into two categories [8]: batch or in-
teractive. Batch programs take a single input, such as a
string, and return an output. Interactive programs take a
sequence of inputs (typically including a choice of operation,
usually a function or method call) that may change the state
of the program, affecting output for future inputs. Many
safety critical programs, such as operating systems, network
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applications, and control systems fall into this category. As
in all testing, the goal of random testing is to produce test
failures: test cases in which a program fault (a particular
bug, repaired by a particular fix) induces error in program
state that propagates to observable output.

Recent work on random testing has focused on strategies
for testing interactive programs, including file systems [7],
data structures [12, 5, 2], and device drivers. For such pro-
grams, a random test suite is a set of test runs. Each test run
is described by a sequence of operations performed starting
from a fixed initial program state. A test budget (the time
available for testing, approximated by limiting the number
of operations) is typically divided into more than one test
run, as failures can result from one-time decisions made at
the beginning of a run. Intuitively, testers expect that using
the entire test budget for a single run and re-initializing the
program state after every operation (performing many runs
of length one) are both unwise strategies, but little more is
known about how to divide a budget. Testers may assume
that longer runs (up to some point short of a single run)
will be more likely to expose faults, motivated in part by
the fact that for every program there is some (unknown)
shortest failing trace and that no shorter run can fail, but
often have little empirical support for this suspicion. Even
random testing researchers often essentially choose a length
based on little more than an educated guess and do not ex-
periment with this ad hoc choice [7].

It is also assumed that longer runs will produce longer
failing traces, which are more difficult to analyze and more
expensive as regression tests. In particular, with random
testing, long runs will contain a large number of irrelevant
operations, hindering debugging. Automated test case mini-
mization via delta-debugging [15] can reduce long traces to a
more manageable length, and is essential for making random
testing useful [9]. Delta-debugging performs a kind of binary
search, potentially quadratic in the test length, to find a
shorter 1-minimal test case (a failing test case that succeeds
if any operation is removed). While quadratic behavior is
seldom observed, the cost of delta-debugging does indeed
increase with test length, and (because it finds a 1-minimal
rather than globally minimal trace) delta-debugging will tend
to produce longer minimized traces from longer runs.

In this paper, we demonstrate that the length of test runs
does indeed significantly impact the number of failures dis-
covered as well as the length of failing traces found, and may
be a major factor in random test effectiveness.
Are Longer Runs Better at Finding Failures? In a
limited sense, longer runs are always better, under two as-



sumptions.

Assumption 1 Checks for failure are performed after every
step of a sequence, rather than only at the end of the
sequence. This avoids the possibility that an operation
may repair an observable error produced by an earlier
operation and prevent failure.

Assumption 2 The probability that a generated test run
of length k + 1 will have a certain prefix of length k is
the same as the probability of generating that run of
length k.

If both assumptions hold, then a test run of length k +
1 will necessarily have a probability of failure equal to or
greater than that of a test case of length k. That is, if our
random test consists of one test run and we aim to maximize
the probability of failure, it should be as long as possible,
if the maximum length does not affect the selection of test
operations — even if the probability of failure decreases with
each step.

In reality, as noted above, software is tested in limited time
and with more than one run. A more realistic model is to
consider how a test budget should be partitioned into runs.
Given a fixed budget of B operations, choosing a length k
determines how many runs will be executed — ranging from
one run of length B to B runs of length one. While the
actual cost in machine time of test operations may vary,
controlling testing time by fixing a budget of operations is
reasonable: the choice to terminate a test usually cannot be
made in mid-operation, and if operations are equally proba-
ble the average cost of k-length tests is often predictable. To
simplify analysis, we will usually assume that even if a test
terminates early after detecting a failure, k operations are
still counted against the budget. This is not unreasonable,
as the purpose of the budget is to limit resources, and the
cost of minimizing the failing test case is likely to be greater
than the cost of the remaining operations. In this model,
increasing run length can decrease the effectiveness of a test
effort, as the expected number of failures depends on the
number of runs executed. Let P (k) be the probability of
finding a failure at length k. The total number of failing
traces found with a test budget of B operations with length
k test runs is N(k) =

¨
B
k

˝
· P (k). The expected number of

traces found increases when we increase test length from k1

to k2 iff
j

B
k2

k
· P (k2) >

j
B
k1

k
· P (k1) That is, if we double

the length of runs, we lower the expected number of failing
traces, unless the probability of failure doubles.
Related Work. Although many random testing strategies
have been proposed, factors that influence the effectiveness
of all such test strategies have not been deeply explored.
Only recently has the effect of the seed and timeout been
investigated thoroughly [4]. Whittaker and Thomason pro-
pose using a Markov chain model in stochastic testing, but
do not address factors for selecting run length [14]. Doong
and Frankl [6] performed random testing of data structures
to measure the efficiency of their ASTOOT method, and
noted that different numbers of operations resulted in dif-
ferent failure rates.
Contributions. This paper presents the first large empiri-
cal study of how test run length affects failure detection and
trace quality. In our simple examples and larger case studies,
we show that there often exists an optimal length of input
sequences for failure detection, and that longer runs lead to
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Figure 1: Probability of failure, Buffer overflow

longer failing traces and more time spent minimizing tests.
We begin by examining two small models, providing an in-
tuitive understanding of the effects of run length. We then
show how these effects appear during the large-scale testing
of an embedded file system at JPL and in unit testing of
Java data structures. We focus on how run length affects
failure detection — how the number of failures discovered
for a given testing budget varies with test run length. Of
course, discovering many traces exposing the same fault is
not the goal of testing (though it can be useful in evaluat-
ing fixes). However, in cases where there is only one fault
in a system (or a small number of faults of roughly equal
probability), failure detection for large budgets serves to ap-
proximate the chance of finding any failure at all (and thus
any fault) with a smaller budget, and is a simpler statistic
to compute and understand than expected-probability-of-
finding-a-fault (which is easy to derive from failure detection
in our examples).

The particular effects of run length vary with program
(and version of that program): we here present a study
of those effects rather than a method for selecting optimal
run length. We do not, therefore, study the large range of
“mixed” strategies for dividing a budget in which k is not
constant but varies over time. We do note that an “iterative
deepening” method of starting with small k and increasing
it until failure detection rates decrease might be useful.
Threats to Validity. There is some possibility that our 5
programs (with 9 versions for one) might be unrepresenta-
tive. In particular, effects of run length might not be similar
for programs with very low failure incidence. Results for low
failure versions of the file system do not contradict our find-
ings, but producing statistically significant results for such
programs appears to be prohibitively expensive.

2. EXAMPLES
For interactive programs, a sequence of operations may

lead to failure. For many faults, there exists a finite set of
minimized failure traces E — minimal sequences that ex-
pose the fault. For example, one bug in the JPL file system
is described by minimized traces of only 2 operations, one
mkdir and one open. If the random tester has a finite set of
operations M to choose from at each step of the test run,
then the set of all possible test runs or traces of length k
or less, Tk, is also finite. From the set of minimized fail-
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Figure 2: Failure detection with and without the
testing budget counting the full run, Buffer overflow
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Figure 3: Avg. failing trace length, Buffer overflow

ing traces, a finite set of failing traces of length less than or
equal to k, Fk, can be derived by including all operations
that do not contribute to (or prevent) failure for each mini-
mized failure trace. Given a random trace of length k, there
is a P (k) = |Fk|/|Tk| probability of failing.

For this category of programs and faults, there exists some
finite optimal run length. To simplify calculations, we as-
sume that at each step the tester chooses an operation from
M uniformly. For each minimized failing trace ρ, we can
calculate the number of traces of length k that contain the
failing trace as B(k, |ρ|) =

`
k

|ρ|

´
(|M | − b)k−|ρ|, where b are

the unique operations in ρ. The probability of finding failure

for length k is thus P (k) =
P

ρ∈E B(k,|ρ|)

|M|k
.

An example of the probability function P is shown in Fig-
ure 1. All interactive programs with this class of faults will
produce a similar binomial cumulative distribution curve.
From this distribution, the existence of some optimal test
run length can be predicted, by calculating P (k)/k. We
precisely calculate the probability for a simple example of
buffer overflow to demonstrate that this calculation accu-
rately predicts the optimal test run length. In our case
studies, although we cannot precisely calculate P , the ex-
perimental results show the same behavior. This suggests
that real experiments exhibit the properties described by
our simple examples.
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Figure 4: Avg. minimized failing trace length,
Buffer overflow

2.1 Buffer Overflow
For this example, we can mathematically predict how the

length of test runs affects the probability of failure. This
example is representative of more complex failures found in
our case studies, where a certain sequence of operations must
be performed before failure. Suppose there are 10 buffers,
one of which is incorrectly allocated and overflows as soon
as a 10th item is added to it. We can “test” this system with
a very simple driver:

for (i = 0; i < k; i++) {
j = rand() % 10;
amount = rand() % 2 + 1;

write (buffers[j], amount);
assert (buffers[BADBUFF] < 10);

}

At each step, one or two items are written to a random
buffer. The simulation fails if the bad buffer has 10 or more
items. We stop a run after k steps. A trace is a sequence of
writes (b, n) where b is the buffer written and n ∈ {1, 2} is
the number of items written. A failing trace is a trace that
ends with the assertion failure. Failing traces contain writes
to the bad buffer and may contain writes to other buffers.
If the writes to the other buffers are removed, the trace is
a minimized failing trace. Ideally, we want to find a test
length k such that we find the most failing traces, and such
that all failing traces or all minimized failing traces have the
shortest possible length.
Failure Detection. To calculate the probability of failing
given a test length of length k, we calculate P (k) = 1 −
Vk/Tk. We now define B(k, s) =

`
k

s

´
(18)k−s as the number

of traces that contain a sequence of s writes to a bad buffer
of length k. There are 10 classes of traces that do not lead
to failure: traces that do not have writes to the bad buffer
(s = 0) and traces that insert s = 1 . . . 9 items in the bad
buffer. Enumerating such traces yields Vk. Figure 1 shows
the plot of P (k) for k between 1 and 200.

To find the k that maximizes failure detection, we want
to increase k1 to k2 if and only if P (k2)/k2 > P (k1)/k1.
P (k)/k is maximized when k = 92. Therefore, the optimal
run length should be 92. Figure 2 shows failures found per
1,000,000 operations by using random tests with a budget
of 10,000,000 operations with run lengths from 1 to 200. As
predicted, the graph peaks when k is 92. In one experi-
ment, if there is an assertion failure in the beginning of the



A → B : {NA, A}KP B
B → A : {NA, NB}KP A

A → B : {NB}KP B

A → I : {NA, A}KPI
I → B : {NA, A}KPB
B → I : {NA, NB}KP A
I → A : {NA, NB}KP A
A → I : {NB}KPI

I → B : {NB}KPB

Figure 5: Needham-Schroeder (NSPK): (a) Proto-
col (b) Man-in-the-middle attack

test run, we continue the test and count all operations per-
formed. In a second experiment we terminate the test run at
the assertion failure and do not count the subsequent opera-
tions toward the testing budget. In this case, failures found
per operation stabilize to some constant as we increase the
input length, confirming the notion that longer runs result
in better failure detection.
Failing Trace Length. There are 144 minimized failing
traces: 89 that result in 10 items being in the buffer and
55 where the final insertion adds two items to the buffer,
for a total of 11. The smallest minimized failing trace is
(bad, 2) : (bad, 2) : (bad, 2) : (bad, 2) : (bad, 2); the longest
is a trace of 9 writes of 1 item to the bad buffer followed
by (bad, 1) or a (bad, 2). Figure 3 shows the average failing
trace length for k = 1...200 with B = 107. Figure 4 shows
the average minimized failing trace length. In both graphs,
k = 92, the optimum choice for failure detection, has an av-
erage (minimized) failing trace length close to the maximum
length, hinting that there is a trade-off between the ability
to detect faults and the quality of traces.

2.2 Needham-Schroeder
The Needham-Schroeder Public-Key Protocol (NSPK) [11]

provides authentication between two parties A and B. A
sends B a nonce and A’s identity encrypted by B’s public
key. B replies with A’s nonce and a newly generated nonce
encrypted by A’s public key. A replies with B’s nonce en-
crypted with B’s public key. At the end of the protocol, B is
supposed to know that A is indeed talking with B and vice
versa. Unfortunately, there is a known man-in-the-middle
attack [10]. An impostor I can initiate the protocol and
induce B to believe that the protocol is executing with A
rather than I . I operates by forwarding messages to A,
since I never needs to encode its identity with A’s key. The
protocol and the attack are shown in Figure 5.

Random testing can find this man-in-the-middle by mod-
eling two legitimate parties, A and B, and a random adver-
sary R on a shared network. A and B will always follow the
protocol: each may randomly choose some party and begin
authentication. If A chooses B, authentication will occur as
in Figure 5. If either A or B chooses R, A or B will ignore
messages that do not follow the protocol. A or B will reset
after receiving n unexpected messages. R randomly gener-
ates message from communications overheard and randomly
selects a receiver. R does not know the protocol, but can
decrypt messages encrypted by its public key and assemble
new messages. This model represents a realistic approach
to randomly testing a protocol for a wide variety of attacks.
Failure Detection. Figure 6 shows how the length of each
run affected authentication failure detection with a test bud-
get of 1,000 operations. The y-axis shows failing traces found
per 100 operations. We find that the most effective length
is 50 operations. Increasing past 50 decreases the effective-
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Figure 6: Failure detection with and without the
testing budget counting the full run, NSPK
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Figure 7: Avg. failing trace length, NSPK

ness, because R has too many recorded messages to choose
from. Again, we show results when operations after failure
are both counted against the total and returned to the test
budget. This is a simple example where feedback [12, 7] in-
fluences failure detection: as a run accumulates history, the
range of the random choices increases, and at some point
the probability of failing (by matching a nonce) begins to
diminish. In this case, the intuition that longer test runs
find more failing traces is incorrect.
Failing Trace Length. In this case, the final result of
minimization is pre-determined: there is one unique fail-
ing trace (abstracting nonces) leading to the exploit (Figure
5(b)). Figure 7 shows how k affected the failing trace length.
The optimum test run length for failure detection produces
failing traces with an average of 29 operations, significantly
more than the minimum of 6 operations. Very small k pro-
duce near-optimal failing traces but are less likely to produce
failures.

3. CASE STUDY: FLASH FILE SYSTEM
The results in this section were generated using a random

test framework for file systems used in space missions [7],
(which we are now applying to file systems for the Mars
Science Laboratory [1]). We selected versions of the file sys-
tem and framework ranging from one of the earliest working
versions to stable versions almost identical to the current



01-19 02-03 02-17 03-03 03-17 04-03 04-27 04-28 09-06

Failure detection 8 9 10 11 11 11 12 S S

Failure rates 13 14 14 15 15 15 14 S S
Avg. failing trace length 16 17 17 17 17 17 17 S S

Minimization cost 18 C C 18 18 18 C 18 18
% minimization cost 19 C C 19 19 19 C 19 19

Avg. minimized trace length 20 C C 20 20 20 C L L
Shortest minimized trace length L C C L L L C 21 21

Reasons for omission: L = lack of interesting features, C = computation-time limits, S = too few points for significance

Table 1: File-system graph overview
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Figure 8: Failure detection, 01-19
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Figure 9: Failure detection, 02-03

release. Failure density ranges from very low (two failing
test cases in two days of testing) to very high (thousands of
failing test cases per hour). We refer to each version by the
date of the first test performed.

Our results are based on further execution of approxi-
mately 25 billion test operations (over 60 machine days).
For each version, depending on the density observed during
logged tests, we ran with a testing budget of 1, 10, or 100
million operations and a run length k ranging in 128 even
steps from 13 to 1600 (in most cases). In some cases, we
only examined test lengths up to 1400, as the file system
releases for these versions were compiled with resource lim-
itations that caused false warnings to dominate the test re-
sults with longer tests (the effect does not appear in shorter
tests, but false warnings become difficult to filter out with
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Figure 10: Failure detection, 02-17
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Figure 11: Failure detection, 03-03, 03-17, 04-03

longer tests). For other versions, this problem did not ap-
pear until a length of around 1600. For 01-19, we observed
convergence to very few failures at low test lengths, and
increased the number of sample points for lower values to
better show this behavior. For each k, we recorded (1) the
number of failing test cases produced. For some versions we
also computed (2) the average failing test case length, (3) the
lengths of minimized failing traces produced from the failing
test cases, and (4) the number of operations spent minimiz-
ing test cases. An operation, for testing or minimization,
took an average ranging from about 0.0002 to 0.0004 sec-
onds to execute, depending on the version of the file system.
Failures represent one fault or two faults of approximately
equal probability, to the best of our knowledge, in all but
one case. Thus failure detection approximates probability
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Figure 12: Failure detection, 04-17
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Figure 13: Failure rates, 01-19

of finding all faults, as desired. Table 1 gives an overview of
results provided, and indicates those omitted due to a lack
of interesting features (L), computation-time limits (C), or
because there are too few data points for significance (S).

3.1 Failure Detection
Figures 8-12 show the number of failing test cases for each

choice of the test run length k. As noted in earlier work, the
number of unique faults (identified by bug fixes) decreased
with time [7]. These figures show that failure detection for
test periods with one or two faults also generally decreased
as the software grew more stable: there were fewer bugs
and the bugs were (usually) less likely to occur in any test
run. The effect was most marked at the beginning of the test
period (where for small k the detection rate was nearly 2,000
failures per 1,000,000 random operations) and at the end of
testing (0.08 failures per 1,000,000 operations). From 03-03
to 04-03, failure detection remained fairly constant, before
peaking again then stabilizing very low. One observation is
that optimizing failure detection was usually unimportant
during early testing, as it was easy to find faults. For later
versions, we were fortunate that our (ad hoc) selection of
k = 1, 000 was close to the optimal.

The effect of k on failure detection is unclear for the final
versions of the software, 04-28 and 09-06, where the prob-
ability of failure is too low to show any meaningful trends.
With a test budget of 100 million operations, testing never
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Figure 14: Failure rates, 02-03, 02-17, 04-17
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Figure 15: Failure rates, 03-03, 03-17, 04-03

produced more than 8 failing test cases for any choice of k.
We speculate that trends might be evident for these versions
if we increased the budget to 10 billion or more operations
(but estimate that producing these results would take at
least 2,000 days of compute time, a daunting prospect even
given the embarrassingly parallel nature of random testing).

As Figures 14 and 15 show, the rate of failure for tests was
still increasing at the point at which false warnings forced
us to end our experiments. This appeared to be the case
for 04-28 and 09-06, though in these cases the infrequency
of failures made it difficult to be certain. In three cases,
the increase in failure rate was sufficient to make the failure
detection appear roughly constant, while in other cases the
rate had decreased enough to produce a decrease in failure
detection. Figure 13 shows a fundamentally different pat-
tern (and demonstrates that the file system test framework
violates Assumption 2 in the Introduction).
Behavior for Larger k. False positives cause the “failure
rate” to approach 1.0 quickly after a certain test length is
reached. At this point experiments show only that increas-
ing k means performing fewer tests.

3.2 Failing Trace Length andDelta-Debugging
Figures 16 and 17 show how run length related to the

length of failing traces. Only the results for 01-19 show any
surprising features. For 01-19, we believe that one fault,
with high probability of appearing just after initialization
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Figure 16: Avg. failing trace length, 01-19
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Figure 17: Avg. failing trace length, 02-03, 02-17,
03-03, 03-17, 04-03, 04-17

and zero probability thereafter, is responsible for the very
low average up through k = 100. Thereafter, another failure
resulting from a different fault became possible and rapidly
increased average length. To some extent, this makes 01-19
less useful for predicting fault detection.

The change in trace length affected delta-debugging cost
and effectiveness. As Figure 18 shows, the cost of delta-
debugging does increase with failing trace length (we only
report costs for a sample of versions, as delta-debugging all
traces for versions with more failures proved too expensive)
— note that this is a graph over trace length, not k. For
very low density versions the increase with trace length was
most extreme, but the number of traces to minimize so small
that delta-debugging costs never amounted to more than 3%
of the budget. However, as Figure 19 shows, when random
testing finds more failures the cost of delta-debugging all
traces can be quite significant — rising to almost 150% of
the test budget for 04-03 (one and a half hours). The cost
would be even higher for versions with more failures.

Figure 20 shows how the average length of minimized
traces changed, for three medium-density versions (note the
different axis for 01-19). For 03-03, the average length never
exceeded 4 operations, and for the other two versions the
average remained below 15 operations. For these versions of
the file system, delta-debugging “flattens” increasing trace
length, and k has little effect on the quality of test cases
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provided to developers (it may slightly improve with rising
k, for 03-17, because of a larger pool of traces). On the
other hand, Figure 21 shows the length of the smallest min-
imized test for the two lowest failure-density versions of the
software — perhaps the most effective measure of the qual-
ity of traces for debugging purposes (not reported for the
other versions as the shortest length is actually a constant
for those versions). Here there is a much more significant
relationship between the test run length and the size of min-
imized traces. The best failing trace ranges in size from 3
operations to 321 operations, depending on how we divide
up our budget: a poor choice of k here can considerably
increase the difficulty of debugging.

4. CASE STUDIES: DATA STRUCTURES
The results in this section were based on the random test-

ing of two data structure units: the MoneyBag unit from
version 3.8 of the JUnit distribution [3], and a version of the
TreeMap unit from the Java 1.4.2 distribution into which
a fault had been introduced. In each of these settings, an
operation is a method call.

4.1 MoneyBag
The MoneyBag unit distributed with JUnit represents vary-

ing amounts of money in different currencies. The ver-
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sion distributed with version 3.8 of JUnit contained a fault
involving the interaction of two methods. The appendTo

method, a kind of specialized addition operation, created a
MoneyBag with only one currency under some circumstances;
however, the equals operation expected all MoneyBag ob-
jects to have more than one currency, leading it to judge two
objects to be unequal when they should have been equal.

Using the framework with which the fault was originally
found, we ran 10,000 test cases of each length from 5 to
420 in increments of 5. We measured the number of fail-
ures detected by the framework for each k, and also counted
the number of method calls actually performed, taking into
account the fact that the test case could fail before the re-
quested length had been reached. We then calculated the av-
erage number of failures per method call actually performed.

The results are shown in Figure 22. The shape of the
graph suggests that for the MoneyBag, any length over ap-
proximately 200 results in about the same failure detection
rate. It also suggests that this efficiency is optimal.

4.2 TreeMap
In earlier experiments [3], we tested mutants of the stan-

dard Java TreeMap unit, a red-black tree implementation by
calling random methods with parameters drawn randomly
from given ranges. We observed that the nature of the driver
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seeded TreeMap unit

tended to cause the size (number of keys) of the TreeMap be-
ing tested to gradually increase until it stabilized at a level
where the driver was as likely to remove an element as it
was to add a new element.

We wanted to simulate a fault in which a lower test se-
quence length was more efficient at forcing failure. We there-
fore seeded a fault into the code in TreeMap which caused
it to fail when trying to find a key in an empty tree. We
hypothesized that the failure was more likely to occur at
low test lengths than at high test lengths, since at high test
lengths the driver would have to remove all keys first. We
ran 200 test cases of each length from 1 to 196 in increments
of 5, and measured the number of failures per actual method
call, as we had done with MoneyBag. Figure 23 shows the
results. The unit was much more likely to fail when the
number of operations was low, but the number of failures
per method call appeared to eventually stabilize at about
0.025, one failure for approximately every 40 method calls.
The shape of the graph is not very similar to any of the
graphs previously observed, but is most similar to the file
system results from 01-19 (Figure 8).

5. ANALYSIS OF RESULTS
We formulate two hypotheses, together capable of explain-

ing our results. The first hypothesis is that the test proce-



dure in some cases behaves as a Markov chain; we show
that this is sufficient to explain the buffer overflow and data
structures results. We begin with another general analysis
of the probability that a test case will fail and the average
length of a failing test case based on Markov chains that is
more general than the binomial analysis described in Section
2. Our second hypothesis is that the test approach in the
file system cases can induce a probability of failure that can
appear linear in the number of operations, which explains
apparently anomalous results for some file system versions.

5.1 Probabilities of Failure
We assume that the random test (the test harness plus

tested program) is in some state from a finite set S = {s1, s2,
. . . , sn} of states. At each state s ∈ S, there is a probability
φ(s) that the next operation will cause an observable failure.
States s ∈ S may not be equally likely after every operation.
We use the notation p(s, j) for the likelihood that the system
is in state s after operation j. The probability pf(j) that
a failure occurs at operation j is therefore the sum, over all
states s, of p(s, j) · φ(s).

This can be used to calculate the average length of a test
run. The system checks an oracle after each operation, and
stops the sequence if it detects a failure. If no failure is
detected, then the length of the sequence performed is k; if
a failure is detected, then the length is m where m ≤ k. The
probability of no failure being detected is

Qk

j=1(1 − pf(j));
the probability of a failure being detected at operation i
is pf(i) ·

Qi−1
j=1(1 − pf(j)). Therefore, when a sequence of

k operations is requested, the average length al(k) of the

actual test case performed is k ·
Qk

j=1(1− pf(j)) +
Pk

i=1(i ·

pf(i) ·
Qi−1

j=1(1 − pf(j))). The difference in average length
when the test run length is k vs. k + 1 operations can be
denoted by al(k + 1) − al(k) so the expression simplifies toQk

j=1(1 − pf(j))).

5.2 Markov Chain Hypothesis
Under certain reasonable assumptions, we can consider a

random test to be a Markov chain. Here we show that this
hypothesis explains why the number of failures per actual
operation performed stabilizes at a constant value in the
buffer overflow and data structures testing.

A Markov chain [13] consists of a finite set S = {s1, s2, . . . ,
sn} of states, and a probability Pij , for each i, j such that
1 ≤ i ≤ n and 1 ≤ j ≤ n. Pij represents the probability
that the next operation will cause the Markov chain to make
a transition from state si to state sj . The Markov chain is
time-homogeneous if the probabilities Pij do not change over
time. In the rest of the paper, we will assume all Markov
chains are time-homogeneous.

In most circumstances, it is reasonable to make the hy-
pothesis that a system for random testing acts as a Markov
chain, in which the states represent the state of the memory
and disk data that the software has access to, and the transi-
tions represent the randomly-selected operations. Situations
in which this Markov chain hypothesis does not hold include
situations in which the software has an effectively infinite
set of states, such as when the program is able to access and
change data on an unlimited number of networked machines.
These situations, however, are rare in testing environments.

Time-homogeneous Markov chains always approach equi-
librium. That is, for each state si there is a stationary state

probability πi, such that the probability that the system
is in state si after a transition approaches πi; in symbols,
limj→∞(p(si, j)) = πi.

Under the Markov chain hypothesis, the probability pf(j)
that a failure will be detected at operation j must converge
toward a constant. Since we have seen that the difference
al(k + 1) − al(k) is

Qk

j=1(1 − pf(j))), we have two cases.

First, if the constant that pf(j) converges toward is 0,
then it is possible that al(k+1)−al(k) converges to a nonzero
value as k increases. This means that test runs of request
length k increase in actual length as k increases, because a
failure is less and less likely to occur as k increases. This
situation happens when none of the Markov chain states si

for which πi > 0 are states in which a failure can occur on
the next operation.

Second, if the constant that pf(j) converges toward is
greater than 0, then al(k + 1) − al(k) converges toward 0.
This means that test cases of requested length k typically
converge in actual length to some constant as k increases.
This situation happens when there is always some accessible
state in which a failure can occur.

However, since we stop a test case when the first failure is
detected, we note that the number of failures per operation
when length k is requested is 1/al(k). Therefore in both of
the cases above, the number of failures per operation con-
verges to a constant: when al(k) grows without bound, the
constant is 0, and when al(k) converges to c, the constant is
1/c. The Markov chain hypothesis is therefore sufficient to
predict that as k increases, the number fpo(k) of failures per
operation converges to a constant. Formally, it predicts that
there is a constant c such that for all positive real numbers
ε, there is a length k such that |fpo(k) − c| < ε.

Although the Markov chain hypothesis predicts that fpo(k)
will converge to a constant, it does not predict whether this
constant is a maximum of fpo(k) over all k, a minimum of
fpo(k) over all k, or something in-between. Our empirical
results show two of the behaviors. In the graphs of fpo(k)
for the buffer overflow example and the MoneyBag unit, the
asymptotic value was a maximum. In the graph of fpo(k)
for the seeded TreeMap fault, the asymptotic value was a
minimum. As discussed below, the asymptotic argument
does not hold for the file system.

This behavior reflects the possible probabilities of failure
at different distances from the start of the test case, and
appears to be independent of the number of faults. For
instance, a graph of fpo(k) that starts at 0, rises to a peak at
k = m and then tails off to a lower constant may reflect only
one fault, if the probability that we are in a state in which
the fault can be triggered is highest at length m; however,
it may reflect two different faults, one of which can only be
triggered early in the sequence, and the other of which can
be triggered at any time.

5.3 Linear Failure Rate Increase
Three of the file system versions show a failure rate that

increases linearly with k. We attribute this somewhat unex-
pected behavior to a violation of Assumption 2: the test
framework adjusts the probability of hardware faults such
that the expected total number of faults per test is constant
for all k, in order to avoid terminating tests early due to
device failure. The underlying Markov model is therefore
different for each k. If discovering an error depends on (1)
simulating a certain number of faults and (2) performing



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  1000  2000  3000  4000  5000

Fa
ilu

re
 ra

te
 (f

ai
le

d 
/ t

ot
al

 te
st

s)

Maximum test run length (k)

P(fault) = f(k)
Fixed P(fault)

Figure 24: Failure rates, file-system model with fault
injection

operations after the faults, the influence of k on the proba-
bility of faults apparently produces a binomial distribution,
but extends the range over which the graph of failure rates
may appear linear, a likely explanation for Figure 15. Figure
24 shows failure rates for a toy model, featuring a single type
of hardware fault. In order to detect the“error”a trace must
first enter a state with exactly 3 faults and then perform, in
order (but with other operations allowed in between), 3 (out
of 10) operations. The graph compares failure rates for this
program if the tester (1) fixes the probability of hardware
faults, P (fault), or (2) adjusts P (fault) with k so that 4
faults are expected in k operations.

6. CONCLUSIONS AND FUTUREWORK
The most important lesson for practitioners and random

testing researchers is that run length has a major influence
on the effectiveness of random testing for interactive pro-
grams. For all programs we tested, changing run length
could increase the number of failures found by an order of
magnitude or more. Run length also controlled the qual-
ity of failing traces produced. Delta-debugging, in many
cases, reduced the importance of run length, but the cost
of delta-debugging increased with length, in some cases con-
suming more operations than testing itself. Our study shows
that the optimal run length and relationships between run
length and quality and cost of minimized failing traces varied
dramatically, even during the development cycle of a single
program, but fit into a small number of patterns.

We also note that behaviors were generally continuous:
for programs where failures are even moderately probable
events, an iterative deepening approach to finding a “good-
enough” run length would appear to be practical. We will
investigate such an approach as future work, using both our
historical data and new testing projects — in particular, we
are concerned that the cost of experiments to determine fail-
ure detection for small k may result in an overall less efficient
use of the budget than simply choosing a larger, sub-optimal,
k in the first place. We hope to investigate how good testers
are at guessing a good k — in the file system case, the dif-
ference in failure detection between the optimal point and
the somewhat arbitrary choice used (k = 1000) was often
too small to justify expensive experimentation (from 02-17
to 04-17) but was occasionally quite high (a factor of two

for 02-03, and over two orders of magnitude for 01-19).
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